753,424 views
187 on YTPak

3,258
178

facebook.com/ScienceReason ... Albert Einstein's Theory of Relativity (Chapter 2): The Phenomenon of Time Dilation.

Time dilation is a phenomenon (or two phenomena, as mentioned below) described by the theory of relativity. It can be illustrated by supposing that two observers are in motion relative to each other, and/or differently situated with regard to nearby gravitational masses. They each carry a clock of identical construction and function. Then, the point of view of each observer will generally be that the other observer's clock is in error (has changed its rate). Both causes (distance to gravitational mass and relative speed) can operate together.

---

Please subscribe to Science & Reason:

• www.youtube.com/Best0fScience

• www.youtube.com/ScienceMagazine

• www.youtube.com/ScienceTV

• www.youtube.com/FFreeThinker

---

Time dilation can arise from (1) relative velocity of motion between the observers, and (2) difference in their distance from gravitational mass.

(1) that the observers are in relative uniform motion, and far away from any gravitational mass, the point of view of each will be that the other's (moving) clock is ticking at a slower rate than the local clock. The faster the relative velocity, the greater the magnitude of time dilation. This case is sometimes called special relativistic time dilation. It is often interpreted as time "slowing down" for the other (moving) clock.

But that is only true from the physical point of view of the local observer, and of others at relative rest (i.e. in the local observer's frame of reference). The point of view of the other observer will be that again the local clock (this time the other clock) is correct, and it is the distant moving one that is slow. From a local perspective, time registered by clocks that are at rest with respect to the local frame of reference (and far from any gravitational mass) always appears to pass at the same rate.

(2) There is another case of time dilation, where both observers are differently situated in their distance from a significant gravitational mass, such as (for terrestrial observers) the Earth or the Sun. One may suppose for simplicity that the observers are at relative rest (which is not the case of two observers both rotating with the Earth -- an extra factor described below). In the simplified case, the general theory of relativity describes how, for both observers, the clock that is closer to the gravitational mass, i.e. deeper in its "gravity well", appears to go slower than the clock that is more distant from the mass (or higher in altitude away from the center of the gravitational mass).

That does not mean that the two observers fully agree: each still makes the local clock to be correct; the observer more distant from the mass (higher in altitude) measures the other clock (closer to the mass, lower in altitude) to be slower than the local correct rate, and the observer situated closer to the mass (lower in altitude) measures the other clock (farther from the mass, higher in altitude) to be faster than the local correct rate. They agree at least that the clock nearer the mass is slower in rate, and on the ratio of the difference. This is gravitational time dilation.

In Albert Einstein's theories of relativity, time dilation in these two circumstances can be summarized:

* In special relativity (or, hypothetically far from all gravitational mass), clocks that are moving with respect to an inertial system of observation are measured to be running slower. This effect is described precisely by the Lorentz transformation.

* In general relativity, clocks at lower potentials in a gravitational field—such as in closer proximity to a planet—are found to be running slower. The articles gravitational time dilation and gravitational red shift give a more detailed discussion. Special and general relativistic effects can combine, for example in some time-scale applications mentioned below.

Thus, in special relativity, the time dilation effect is reciprocal: as observed from the point of view of either of two clocks which are in motion with respect to each other, it will be the other clock that is time dilated. (This presumes that the relative motion of both parties is uniform; that is, they do not accelerate with respect to one another during the course of the observations.)

• en.wikipedia.org/wiki/Time_dilation

.

Time dilation is a phenomenon (or two phenomena, as mentioned below) described by the theory of relativity. It can be illustrated by supposing that two observers are in motion relative to each other, and/or differently situated with regard to nearby gravitational masses. They each carry a clock of identical construction and function. Then, the point of view of each observer will generally be that the other observer's clock is in error (has changed its rate). Both causes (distance to gravitational mass and relative speed) can operate together.

---

Please subscribe to Science & Reason:

• www.youtube.com/Best0fScience

• www.youtube.com/ScienceMagazine

• www.youtube.com/ScienceTV

• www.youtube.com/FFreeThinker

---

Time dilation can arise from (1) relative velocity of motion between the observers, and (2) difference in their distance from gravitational mass.

(1) that the observers are in relative uniform motion, and far away from any gravitational mass, the point of view of each will be that the other's (moving) clock is ticking at a slower rate than the local clock. The faster the relative velocity, the greater the magnitude of time dilation. This case is sometimes called special relativistic time dilation. It is often interpreted as time "slowing down" for the other (moving) clock.

But that is only true from the physical point of view of the local observer, and of others at relative rest (i.e. in the local observer's frame of reference). The point of view of the other observer will be that again the local clock (this time the other clock) is correct, and it is the distant moving one that is slow. From a local perspective, time registered by clocks that are at rest with respect to the local frame of reference (and far from any gravitational mass) always appears to pass at the same rate.

(2) There is another case of time dilation, where both observers are differently situated in their distance from a significant gravitational mass, such as (for terrestrial observers) the Earth or the Sun. One may suppose for simplicity that the observers are at relative rest (which is not the case of two observers both rotating with the Earth -- an extra factor described below). In the simplified case, the general theory of relativity describes how, for both observers, the clock that is closer to the gravitational mass, i.e. deeper in its "gravity well", appears to go slower than the clock that is more distant from the mass (or higher in altitude away from the center of the gravitational mass).

That does not mean that the two observers fully agree: each still makes the local clock to be correct; the observer more distant from the mass (higher in altitude) measures the other clock (closer to the mass, lower in altitude) to be slower than the local correct rate, and the observer situated closer to the mass (lower in altitude) measures the other clock (farther from the mass, higher in altitude) to be faster than the local correct rate. They agree at least that the clock nearer the mass is slower in rate, and on the ratio of the difference. This is gravitational time dilation.

In Albert Einstein's theories of relativity, time dilation in these two circumstances can be summarized:

* In special relativity (or, hypothetically far from all gravitational mass), clocks that are moving with respect to an inertial system of observation are measured to be running slower. This effect is described precisely by the Lorentz transformation.

* In general relativity, clocks at lower potentials in a gravitational field—such as in closer proximity to a planet—are found to be running slower. The articles gravitational time dilation and gravitational red shift give a more detailed discussion. Special and general relativistic effects can combine, for example in some time-scale applications mentioned below.

Thus, in special relativity, the time dilation effect is reciprocal: as observed from the point of view of either of two clocks which are in motion with respect to each other, it will be the other clock that is time dilated. (This presumes that the relative motion of both parties is uniform; that is, they do not accelerate with respect to one another during the course of the observations.)

• en.wikipedia.org/wiki/Time_dilation

.

6-digit hexadecimal color code without # symbol.

Report video function is under development.